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We consider supercritical vertex percolation in Zd with any non-degenerate
uniform oriented pattern of connection. In particular, our results apply to the
more special unoriented case. We estimate the probability that a large region is
isolated from .. In particular, ‘‘pancakes’’ with a radius rQ. and constant
thickness, parallel to a constant linear subspace L, are isolated with probability,
whose logarithm grows asymptotically as £ rdim(L) if percolation is possible
across L and as £ rdim(L)−1 otherwise. Also we estimate probabilities of large
deviations in invariant measures of some cellular automata.
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We consider a d-dimensional real space Rd with a basis (e1,..., ed), which
includes a d-dimensional integer space

Zd=3v=C
d

i=1
viei, vi ¥ Z4 .

In both spaces we use the norm ||v||=maxi |vi |. Elements of Rd are called
points or vectors, elements of Zd are called vertices or integer vectors. The
paper consists of three parts. In the first two parts we prove two statements
about percolation. Similar estimations in another setting were obtained in
one direction in ref. 1 and in the other in ref. 2. In the third part we derive
a conclusion about cellular automata.



PART I. THE STANDARD PERCOLATION PATTERN

A finite path from v to w in an oriented or non-oriented graph is a
finite sequence ‘‘vertex-edge-vertex-edge- · · · -vertex,’’ where the first vertex
is v, the last vertex is w and every edge goes from the previous to the next
vertex. The length of a finite path is the number of edges in it. An infinite
path starting at v is an infinite sequence ‘‘vertex-edge-vertex-edge- · · · ,’’
where the first vertex is v. A bi-infinite path is a bi-infinite sequence
‘‘ · · · -edge-vertex-edge-vertex-edge- · · · .’’ A path is called self-avoiding if all
the vertices in its sequence are different. We say that a path goes to . if it
is infinite and self-avoiding. A path belongs to a set S if all of its vertices
belong to S. A path avoids a set S if none of its vertices belongs to S,
otherwise it hits S. We say that a path starts at a set if it starts at some
element of this set.
Throughout Parts I and II we assume that every element of Zd is either

closed with probability e or open with probability 1− e independently of
others. In both parts there is a finite set of non-zero vectors {n1,..., nn}
… Zd, called neighbor vectors, and we study percolation on an oriented
graph N having Zd as the set of vertices, in which oriented edges go from
any vertex v to the vertices v+n1,..., v+nn, which are called N-neighbors
of v. A finite or infinite sequence of elements of Zd is called N-path if every
of its element except the first one is a N-neighbor of the preceding term.
A N-path is called open if all its vertices are open. We say that a vertex w is
reachable from a vertex v if there is a finite open path from v to w and that
a vertex is reachable from a set if it is reachable from some element of this
set. We say that a vertex is cut from . if the set of vertices reachable from
it is finite. It is well-known that a vertex is not cut from . if and only if
there is an open path from this vertex to .. A finite set of vertices is
termed cut from . if all its elements are cut from . or, which is the same,
the set of vertices reachable from this set is finite. For any finite S … Zd

we denote Pcut(S) the probability that S is cut from .. Given two sets
S, B … Zd, we denote W(S | B) the set of vertices reachable from S if B
is the set of closed vertices. We say that B is a barrier for S if W(S | B) is
finite. In particular, any set in Zd is its own barrier. (This is different from
the approach used in some other articles, which assume that S 5 B=”.
Our approach is designed to be applicable to cellular automata.) Thus for
any finite S … Zd there is a finite barrier, so we may denote k0(S) the
smallest number of elements in a barrier for S.
In Part I we consider the special case

{n1,..., nn}={e1,..., ed} (1)
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and we use a non-oriented graph D with Zd as the set of vertices, in which
any v, w ¥ Zd are connected with an edge if ||v−w||=1, in which case v and
w are called D-neighbors. Edges of D are called D-edges. A sequence of
elements of Zd is called a D-path if every of its two next elements are
D-neighbors. A set S ı Zd is called D-connected if for any two of its
elements there is a D-path in S, connecting them.

Theorem 1. Assuming (1), for every d \ 2 there are egd > 0 and
Cd > 0 such that for all D-connected S … Zd and all e ¥ (0, egd)

ek0(S) [ Pcut(S) [ (Cd · e)k0(S).

Proof of Theorem 1. Let | · | denote cardinality. The lower estima-
tion is trivial: since there is a barrier B of S, such that |B|=k0(S), the
probability that all its elements are closed equals ek0(S), whence the proba-
bility that S is cut from . cannot be less than this. The bulk of Part I
is a proof of the upper estimation of Theorem 1. A barrier for S is called
minimal if all its proper subsets are not barriers for S. For any S … Zd and
v ¥ Zd we call a shift of S by a vector v the set S+v=v+S={s+v, s ¥ S}.
Also for any S1, S2 … Rd we denote S1+S2={a+b, a ¥ S1, b ¥ S2}.

Lemma 1. If S … Zd is finite and B is a minimal barrier for S, then
any shift of B by a non-zero vector is not a minimal barrier for S.

Proof. For any finite set S … Zd and any i ¥ {1,..., d} let us denote
mi(S) the minimum of ith components of elements of S. Let us prove by
contradiction that if B is a minimal barrier for a finite set S … Zd, then
mi(B)=mi(S) for all i. First, let mi(B) > mi(S). Then B is not a barrier for
S because S contains at least one element v, whose ith component is less
than mi(B) and therefore all the vertices of the form v+w1+·· ·+wn,
where n is any natural number and all wk are ej with j ] i, are reachable
from v. Now let mi(B) < mi(S). Then, even if B is a barrier for S, it is not
minimal, because it remains a barrier, when we exclude from it all the ver-
tices, whose ith component is less than mi(S). Now let a minimal barrier
for S be shifted by a non-zero vector. Then mi of the shift is different from
mi(S) for at least one i, whence the shift cannot be a minimal barrier
for S. L

Lemma 2. For any finite S … Zd and any B … Zd:

(a) S ı B 2W(S | B);
(b) If B is a minimal barrier for S, then B ı S 2 (W(S | B)+N);
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(c) Any minimal barrier for S is finite;
(d) Any barrier for S contains a minimal barrier for S.

Proof of (a). The proof of (a) is evident.

Proof of (b). Let us denote C=W(S | B)+N (the set of N-neigh-
bors of elements ofW(S | B)), take any b ¥ B and prove that b ¥ S 2 C. Let
us denote BŒ=B0{b}. Since B is a minimal barrier, BŒ is not a barrier,
whence there is a N-path from S to ., which avoids BŒ. Since B is a
barrier, this path must contain b and it is the only term of our path, which
belongs to B. Let us denote a the last term of this path, which belongs to S.
If a=b, then b ¥ S and we are done. So let a ] b. Then a has to precede
b in our path because otherwise there would be a path from a ¥ S to .
avoiding B, whence B would not be a barrier of S. Notice that a does
not belong to B, because if it would, it would belong to BŒ, but our path
avoids BŒ. Notice that S ı B 2W(S | B), whence a ¥W(S | B). Then we
prove by induction that all the terms in this path, which are between a
and b, also belong toW(S | B), whence b ¥W(S | B)+N.

Proof of (c). Since B is a barrier of S, the set W(S | B) is finite.
Therefore C defined in the proof of (b) is finite, so from item (b) B is finite
also.

Proof of (d). Given any barrier B, let us denote BŒ=B 5 (S 2 C),
where C was defined in the proof of (a). BŒ is finite because S and C are
finite. Let us prove that BŒ is a barrier. If it is not, there is an infinite self-
avoiding N-path starting at some a ¥ S and avoiding BŒ. So a ¨ B, whence
a ¥W(S | B) from item (a). Since B is a barrier, W(S | B) is finite, so there
is the last term in our path belonging to W(S | B). The next term, which
we denote c, belongs to C. Then c ¨ B because our path avoids BŒ=B 5
(S 2 C). But then c ¥W(S | B), which contradicts our choice of the pre-
ceding term. So BŒ is a barrier. Since BŒ is finite, we have proved that any
barrier contains a finite barrier. If it is not minimal, we exclude from it
elements one after another until we get a minimal barrier. L

Lemma 3. For any finite S … Zd

Pcut(S) [C
B
e |B|= C

.

k=k0

Mk · ek,

where the first sum is taken over all minimal barriers B for S. In the second
sum Mk=Mk(S) is the number of minimal barriers for S containing k
elements and k0=k0(S) is the same as before, i.e., the minimal value of
k for whichMk > 0.
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Proof. Due to item (d) of Lemma 2, any configuration, where S is
cut from ., belongs to a cylinder set defined by a condition ‘‘all vertices in
B are closed,’’ where B is a minimal barrier for S. Therefore the event ‘‘S is
cut from .’’ is covered by the events ‘‘all elements of B are closed,’’ where
B runs all minimal barriers of S, all of which are finite from item (c) of
Lemma 2. L

The sum in Lemma 3 is of the typical form in a Peierls argument and
its estimation should be based on an exponential estimation of Mk, which
becomes our main goal in Part I. We also use a non-oriented graph E with
Zd as the set of vertices, in which any v ¥ Zd is connected with vertices v±ei
for all i=1,..., d. Edges of E are called E-edges. Thus graphs M, D and
E have one and the same set Zd of vertices. In Part I, due to (1), N and E
have one and the same set of edges, only in N they are oriented and in E
they are not. A sequence of elements of Zd is called a E-path if every of its
two next elements are E-neighbors. A set S ı Zd is called E-connected if
for any two of its elements there is an E-path in S, connecting them. In
Part I, any N-path is an E-path. If two vertices are E-neighbors, they are
D-neighbors, whence any E-path is a D-path and any E-connected set is
D-connected. Let us call an E-path connecting v, w ¥ Zd shortest if its
length equals ;i |v−w|, which is the minimum of lengths of all E-paths
connecting v with w.

Lemma 4. If v, w ¥ Zd are D-neighbors, then any two different
terms of a shortest E-path connecting v with w, are D-neighbors.

Proof. Suppose that v, w ¥ Zd are D-neighbors. For every i ¥ {1,..., d},
if p is a term of a shortest path connecting v with w, then pi equals vi or wi.
Therefore, if p and q are two terms of such a path, then |pi−qi | [ |vi−wi |
[ 1. L

For any S … Zd we denote S̄ the set of those elements of Zd, from
which there is no D-path to . avoiding S.

Lemma 5. For any S … Zd:
(a) S ı S̄;
(b) If S is finite, then S̄ is finite also.

Proof of (a). Any path, starting at a vertex v ¥ S, includes v and
therefore does not avoid S, whence v ¥ S̄.

Proof of (b). Let us break S̄0S into classes of equivalence, called
clusters, two elements of S̄0S being equivalent if they are connected by a
D-path in S̄0S. The set of clusters is finite because we can estimate their
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number as follows: on one hand, every cluster has at least one D-neighbor
belonging to S, on the other hand every element of S (in fact, every element
of Zd) has 3d−1 D-neighbors. Therefore the number of clusters does not
exceed (3d−1) · |S|. All the clusters are finite, because if one of them were
infinite, there would be a path from any of its elements to . in this cluster,
which contradicts the definition of S̄. So the union of clusters is finite
also. L

Lemma 6. If S … Zd is finite and D-connected, then for any B
barrier of S the set (S 5 B) 2W(S | B) is finite and D-connected.

Proof. Let us denote C=(S 5 B) 2W(S | B). Since B is a barrier
of S, the set W(S | B) is finite, whence C is finite. Let us prove that C is
D-connected. Let us take any a, b ¥ C and consider three cases.

First Case: a, b ¥ S 5 B. Since S is D-connected, there is a D-path in
S connecting a with b. From item (a) of Lemma 2, this D-path belongs
to C.

Second Case: a, b ¥W(S | B). Since any v ¥W(S | B) is reachable
from some w ¥ S, there is a N-path from w to v, all of whose terms are also
reachable from w and therefore belong to W(S | B). Since any N-path is a
D-path, we can connect any two elements of W(S | B) by D-paths belong-
ing to W(S | B) with some elements of S. Since S is D-connected, these two
elements are connected with a D-path belonging to S. Then we take a con-
catenation of these three paths and, arguing like in the first case, we prove
that this path belongs to C.

Third Case: a ¥ B 5 S and b ¥W(S | B). This case can be treated like
the second one. L

Now we are approaching our main task: to estimate Mk. To do this,
we need to prove that any minimal barrier B can be included in a con-
nected set, whose cardinality is O(|B|). Informally speaking, our proof is
based on the idea that the boundary of a bounded connected set is also
connected. Following p. 138 of ref. 3, for any S … Zd we denote “extS the set
of those elements of Zd0S, which have a D-neighbor in S and from which
there is a D-path to ., avoiding S. Also for any S … Zd let us denote “DS
the set of those elements of Zd0S, which have a D-neighbor in S.

Lemma 7. For any finite S … Zd the sets “extS and “DS̄ coincide.

Proof. From item (a) of Lemma 5, “extS ı “DS̄. It remains to prove
that “DS̄ ı “extS. Take any v ¥ “DS̄. By definition of “D, v belongs to Zd0 S̄
and has a D-neighbor w ¥ S̄. Let us take any shortest path p0=v,..., pm=w
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from v to w. Let pk be the first term in this path belonging to S̄. If pk did
not belong to S, we could start at this term, go back on the path to v and
then to . avoiding S, whence pk would not belong to S̄. So pk ¥ S. From
Lemma 4, v and pk are D-neighbors, whence v has a D-neighbor in S. Thus
v ¥ “extS. L

Lemma 8. If d \ 2, then for any finite D-connected set S … Zd, the
set “extS is E-connected.

Proof. This lemma is proved as Lemma 2.23 on p. 139 of ref. 3.
Lemma 2.1 in ref. 4, Lemmas 4.1 and 5.1 in ref. 5 and Proposition 6 in
ref. 6 are similar and could also be used for our purpose, but not so easily.

Lemma 9. For any finite S … Zd and any minimal barrier B of S:

(a) B 5W(S | B)=”;
(b) B ı S 2 “extW(S | B).

Proof of (a). Let us take any b ¥ B and prove that there is a D-path
from b to . avoidingW(S | B). Since B is minimal, B0{b} is not a barrier,
so there is a N-path from S to . avoiding B0{b}. Since B is a barrier,
this N-path must contain b. This path cannot pass through any element
v ¥W(S | B) after it has passed through b, because there would then exist
a path from S to v and then from v to . avoiding B. So there is an open
infinite self-avoiding N-path, hence an E-path, hence a D-path starting at b
and avoidingW(S | B).

Proof of (b). Let us take any b ¥ B0S. From item (a), b does
not belong to W(S | B). From item (b) of Lemma 2, b is a N-neighbor,
hence an E-neighbor, hence a D-neighbor of some element of W(S | B).
Thus b ¥ “extW(S | B) by definition of “ext. L

Lemma 10. For any finite D-connected S … Zd and a minimal
barrier B of S the set (S 5 B) 2 “extW(S | B) is finite and D-connected.

Proof. Let us denote

C=(S 5 B) 2 “extW(S | B) and CŒ=(S 5 B) 2W(S | B).

Since B is a barrier of S, the set W(S | B) is finite. Then from item (b) of
Lemma 5, C is finite. It remains to prove that C is D-connected. First let us
prove that any v, w ¥ C are connected with a D-path in C 2 CŒ. If both
v and w belong to S 5 B, this follows from Lemma 6. If v ¥ “extW(S | B)
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and w ¥ S 5 B, then by definition of “exp, vertex v has a D-neighbor
vŒ ¥W(S | B), which by Lemma 6 is connected with w by a D-path in CŒ,
whence v is connected with w by a D-path in C 2 CŒ. If both v and w
belong to “extW(S | B), they have D-neighbors vŒ, wŒ ¥W(S | B), which are
connected with a D-path in CŒ by Lemma 6, whence v and w are connected
with a D-path in C 2 CŒ.
Now let us argue by induction. Notice that CŒ0C=W(S | B). The

induction step is the following: if a D-path in C 2 CŒ connecting v, w ¥ C
contains at least one element of CŒ0C=W(S | B), then there is a D-path
in C 2 CŒ connecting v, w containing a smaller number of elements of
CŒ0C. Let us denote our path (p1,..., pn), where p1=v and pn=w. From
definition of “ext and item (a) of Lemma 9, C 5W(S | B)=” whence
v, w ¨W(S | B). Let us break CŒ0C=W(S | B) into classes of equivalence,
which we call clusters and denote Q1,..., Qn, claiming two elements of
W(S | B) equivalent if there is a D-path in W(S | B) connecting them. Let
j be the smallest index such that pj ¥W(S | B) and let Qi be the cluster
containing pj. Let k be the greatest index such that pk ¥ Qi. Let us prove
that “extQi ı “extW(S | B). By definition of “ext, any element of “extQi has a
D-neighbor in Qi ıW(S | B). It remains to prove that from any element of
“extQi there is a D-path to . avoiding W(S | B). Indeed, there is a D-path
from pj−1 to . avoiding W(S | B) and therefore Qi, namely first back
along our path to p1=v and then to . using the fact that v ¨W(S | B).
Now let us prove that

“extQi ı “extW(S | B). (2)

Notice that “extQi does not intersect W(S | B) by definition of “ext and
definition of clusters. Let us take any v ¥ “extQi. By definition of “ext, vertex
v has a D-neighbor in Qi ıW(S | B). From Lemma 8, “extQi is E-con-
nected, hence D-connected. So there is a D-path from v to pj−1 in “extQi,
hence avoidingW(S | B). Also, as we have seen, there is a D-path from pj−1
to . avoiding W(S | B). Concatenating these paths, we obtain a D-path
from v to . avoiding W(S | B). Thus (2) is proved. In particular, we have
proved that pj−1, pk+1 ¥ “extQi. From Lemma 8, the set “extQi is E-con-
nected, hence D-connected, so pj−1 and pk+1 are connected with a D-path
within “extQi ı “extW(S | B) ı C, which we substitute into our path instead
of (pj,..., pk). Thus we obtain another D-path in C 2 CŒ connecting v with w,
whose number of terms belonging to CŒ0C is less than in the original path.
After several such steps we obtain a D-path in C connecting v with w. L

Now we need to prove that |“extW(S | B)| [ const · |B|. Given a finite
S … Zd, for all i ¥ {1,..., d}, we denote:
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(a) “+S is the set of those edges of the graph N, which lead from an
element of S to an element of Zd0S;

(b) “−S is the set of those edges of the graph N, which lead from an
element of Zd0S to an element of S;

(c) “1S=“+S 2 “−S.

Lemma 11. For any finite S … Zd:

(a) “+S 5 “−S=”;
(b) |“+S|=|“−S|.

Proof of (a). The proof of (a) is evident.

Proof of (b). For every i ¥ {1,..., d} let us denote “+iS the set of
those edges belonging to “+, which are parallel to the i th axis and “−iS the
set of those edges belonging to “− , which are parallel to the ith axis. First
let us prove that for any finite S … Zd and any i ¥ {1,..., d}

|“+iS|=|“−iS|. (3)

Let us concentrate on one line parallel to the ith axis. Following this line
from −. to ., we actually follow a bi-infinite N-path. Since S is finite,
the number of N-edges from Zd0S to S equals the number of N-edges
from S to Zd0S in this N-path. But elements of “+iS and “−iS belonging
to this line are exactly these N-edges, so their numbers on this line are
equal. Summing over all lines parallel to the ith axis, we prove (3). Now,
summing (3) over i ¥ {1,..., d}, we prove Lemma 11.

Lemma 12. For any finite S … Zd

|“DS| [ 4d · |“+S|.

Proof. Let us say that a vertex v is a vassal of an E-edge if both ends
of this E-edge are D-neighbors of v. Notice that any E-edge has 2 · 3d−1

vassals. Let us prove that any element of “DS is a vassal of some element
of “1S. From the definition, every v ¥ “DS has a D-neighbor w ¥ S. Let us
take a shortest path p0=v,..., pk=w connecting v with w. Let pj be the last
term in this path, which does not belong to S. Then v is a vassal of the
E-edge connecting pj and pj+1. Now using Lemma 11

|“DS| [ 2 · 3d−1 · |“1S|=4·3d−1 · |“+S| < 4d · |“+S|. L
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Lemma 13. If S … Zd is finite and B is a minimal barrier of S, then

|“extW(S | B)| [ d ·4d · |B|.

Proof. First we use Lemma 7 and then, since W(S | B) is finite, we
can use Lemma 12 to obtain

|“extW(S | B)|=|“DW(S | B)| [ 4d · |“+W(S | B)|.

For any N-edge, parallel to the ith axis, let us call that end, where the
value of the i th coordinate is greater, positive, and the other one negative.
Observe that the positive end of any element of “+W(S | B) belongs to B,
because otherwise this end would have to belong to W(S | B), since the
negative end belongs to it. On the other hand, any element of Zd is a posi-
tive end of d N-edges, whence any element of B is a positive end of at most
d edges belonging to “+W(S | B). Therefore

|“+W(S | B)| [ d · |B|.

The last two inequalities prove Lemma 13.

Lemma 14. For any d \ 2 there is a number C such that for any
D-connected set S … Zd and any natural k the number of minimal barriers
for S, containing k vertices, does not exceed Ck.

Proof. Let S … Zd be D-connected. For any B minimal barrier of
S we imagine a non-oriented graph, whose vertices are the elements of
(S 5 B) 2 “extW(S | B) and two vertices are connected with an edge if they
are D-connected. From Lemma 10 this graph is connected and from item
(b) of Lemma 9 all the elements of B are among its vertices. By eliminating
some edges, we turn this graph into a tree. Let us denote t the number of
its vertices. From Lemma 13

t [ |B|+|“extW(S | B)| [ (1+d·4d) · |B|.

For any tree with t vertices there is a path in it with length 2t−2, which
visits all its vertices at least once and returns to the initial vertex. Let us
choose such a path and encode it by a sequence of symbols. Every element
of Zd is D-connected with 3d−1 other elements, so to encode the direction
of one step of our path we need a choice of 3d−1 symbols. In addition,
we need to encode whether the present vertex belongs to B or not, so
the number of choices which it is sufficient to have at every step is
2 · (3d−1) < 3d+1. The length of the coding sequence is

2t−2 [ 2t [ 2 · (1+d·4d) · |B|.
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Let us pad some more terms to this sequence at the end of it so that the
path remains within the same tree to make the length of the sequence
become exactly 2 · (1+d·4d) · k, where k=|B|. Every such sequence deter-
mines B only up to a shift, but due to Lemma 1 at most one shift is a
minimal barrier for S. Thus

Mk [ Ck, where C=(3d+1)2 · (1+d·4
d). L (4)

Due to Lemma 14, the estimation in Lemma 3 turns into

Pcut(S) [ C
.

k=k0

(C · e)k=
(Ce)k0

1−Ce
[ (Cd · e)k0,

where k0=k0(S), C is taken from (4), Cd=2C and e < e
g
d=1/(2C).

Theorem 1 is proved.

Part II. Cutting Pancakes

Here we apply Theorem 1 to a more special kind of sets to be cut from
infinity, but with a more general pattern of percolation. We assume that
there is a finite set {n1,..., nn} … Zd of non-zero integer vectors called
neighbor vectors and consider vertex percolation on the oriented graph N,
whose set of vertices is Zd and an oriented edge goes from v to w if
w−v ¥N, in which case we call w an N-neighbor of v. Our approach inclu-
des the unoriented percolation as a special case when N has central sym-
metry and includes the pattern used in Part I as a special case specified
by (1). For any r \ 0 we call a cube the set

Wr={x ¥ Rd : ||x|| [ r}.

Geometrically, Wr is a cube with center at the origin and side 2r, whose
edges are parallel to the axes. We call pancakes sets denoted and defined as

GL, r, r=(L 5 Wr)+Wr,

where L is a linear subspace of Rd. We call L direction, dim(L) dimension,
r radius and r thickness of the pancake GL, r, r. Our purpose is to estimate
the asymptotic behavior of probability that a discrete pancake GL, r, r 5 Zd is
cut from . when radius r tends to . while d, N, L and r remain constant,
r being large enough.
Whenever we use the word ‘‘constant’’ or abbreviation const, we mean

a positive number, which does not depend on r. If f and g are two positive
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functions of the same arguments, f£ g means that there is a positive con-
stant C, which we call an estimation constant, such that f [ C·g and
g [ C·f. When we want to mention the estimation constant explicitly, we
use the sign £

C with the same meaning.

Theorem 2. For any graph N, where {n1,..., nn} is a finite set of
non-zero integer vectors, among which at least two are non-collinear
(whence d \ 2), and any L a linear subspace of Rd, there are eg > 0 and r0
such that for any e ¥ (0, eg) and r \ r0 there is C > 0 such that for all r \ 0

− ln Pcut(GL, r, r 5 Zd)£C ˛ r
dim(L)−1 if {n1,..., nn} ı L,

rdim(L) if {n1,..., nn} ł L.

One may compare this theorem with that of ref. 7, which is also for-
mulated in terms of directions of neighbor vectors in oriented percolation.

Proof of Theorem 2. From now on we fix d, N and L satisfying the
assumptions of Theorem 2. Notice that since − ln( · ) is a decreasing func-
tion, upper estimations in Theorem 2 are based on lower estimations of
Pcut(GL, r, r 5 Zd) and vice versa.

Lemma 15.

(a) For any convex set S … Rd the set (S+W1/2) 5 Zd is D-connected.

(b) For any convex set S … Rd and any r \ 1/2 the set (S+Wr) 5 Zd

is D-connected.

(c) Whenever r \ 1/2, the set GL, r, r 5 Zd is D-connected.

Proof of (a). For any v ¥ Zd let us call unit cube centered at v and
denote cube(v) the set v+W1/2. Notice that all unit cubes are closed,
that they cover all the space Rd, that their pairwise intersections have
volume (d-dimensional measure) zero, that two unit cubes intersect if
and only if their centers are D-neighbors and that (S+W1/2) 5 Zd is the
set of those vertices, whose unit cubes intersect S. Now let us denote
SŒ=(S+W1/2) 5 Zd, take any v, w ¥ SŒ and prove that they are connected
with a D-path in SŒ. Since unit cubes centered at v and w intersect S, we can
take some p ¥ cube(v) 5 S and q ¥ cube(w) 5 S and connect them with a
segment. Since S is convex, this segment belongs to S. Since unit cubes with
centers in SŒ cover S, they cover this segment. Since S is limited, SŒ is finite.
So this segment can be cut into a finite sequence of pieces, each belonging
to a unit cube of some element of SŒ. Every two next unit cubes in this
sequence intersect, whence their centers are D-neighbors. So we have a
D-path in SŒ connecting v with w. L
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Proof of (b). Since any Wr is convex and Wa+Wb=Wa+b, we may
represent S+Wr=(S+Wr−1/2)+W1/2, so item (b) follows from item (a).

Proof of (c). It follows from item (b) and definition of GL, r, r since
L 5 Wr is convex. L

Lemma 16. For any d, L, r \ 1/2 and N specified in Theorem 2
there is C > 0 such that for all r \ 0

|GL, r, r 5 Zd|£C rdim(L).

Proof. Estimation from Below. Notice that GL, r, r=GL, r, r−1/2+W1/2.
Let us denote

S=GL, r, r 5 Zd=(GL, r, r−1/2+W1/2) 5 Zd.

Since unit cubes with centers in S cover GL, r, r−1/2 and the volume of each
of their intersections with GL, r, r−1/2 does not exceed a constant, their
number is not less than a positive constant times volume of GL, r, r−1/2,
which is £ rdim(L).

Estimation from Above. The union of unit cubes with centers in S
belongs to GL, r, r+W1/2=GL, r, r+1/2. Pairwise intersections of different unit
cubes have volume zero. So their number does not exceed a constant mul-
tiplied by the volume of GL, r, r+1/2, which is £ rdim(L). L

Lemma 17. For any d, L, r \ 1/2 and N specified in Theorem 2
there is C > 0 such that for all r \ 0

k0(GL, r, r 5 Zd)£C ˛ r
dim(L)−1 if {n1,..., nn} ı L,

rdim(L) if {n1,..., nn} ł L.

Proof. Upper Estimations. First let {n1..., nn} ł L. From Lemma 16,
|GL, r, r 5 Zd|£ rdim(L). Since the set GL, r, r 5 Zd serves as its own barrier, the
upper estimation immediately follows. Now let {n1,..., nn} ı L. In this case
we use the set

S=(L 5 (Wr+||N|| 0Wr))+Wr,

where ||N||=max(||n||, n ¥N). It is evident that S 5 Zd is a barrier for
GL, r, r 5 Zd and that cardinality of S 5 Zd grows as const · rdim(L)−1 when
rQ., whence the upper estimation follows.

Lower Estimations. Let us choose any n ¥ {n1,..., nn} and draw lines
parallel to n through all the elements of GL, r, r 5 Zd. Any barrier for this set
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must intersect all these lines, whence the number of elements in a barrier
cannot be less than the number of these lines. Let us estimate this number
in our two cases.

First let {n1,..., nn} ı L. From Lemma 16 |GL, r, r 5 Zd|£ rdim(L). The
number of elements of GL, r, r 5 Zd belonging to one line does not exceed
a constant times the diameter of this set and therefore does not exceed
const · r. So the number of different parallel lines drawn through all the
elements of GL, r, r 5 Zd cannot be less than the ratio of these numbers,
namely const · rdim(L)−1.

Now let {n1..., nn} ł L. Let us choose n ¥ {n1,..., nn}0L. In this case
the number of elements of GL, r, r 5 Zd belonging to one line parallel to n
does not exceed a constant. Therefore the number of different lines parallel
to n drawn through all the elements of GL, r, r 5 Zd cannot be less than a
constant times the cardinality of this set and therefore cannot be less than
const · rdim(L). L

The lower estimation of Theorem 1, item (c) of Lemma 15 and the
upper estimations of k0 provided by Lemma 17 immediately infer the upper
estimations of Theorem 2.
Now let us prove the lower estimations of Theorem 2. For the case (1)

they immediately follow from the upper estimation of Theorem 1 and
Lemma 17. Let us consider another special case when there are only two
linearly independent neighbor vectors n1, n2 ¥ Zd. Now graph N may be
disconnected. All its connected components are shifts of NŒ, where NŒ is
the sub-graph of N, whose vertices are linear combinations of n1, n2 with
integer coefficients, from every site v of which oriented edges go to v+n1,
v+n2. Graph NŒ is isomorphic with the graph N considered in Part I with
d=2. Also let us denote Nœ the minimal linear space containing NŒ, that
is the set of linear combinations of n1, n2 with real coefficients. Clearly, if
S … SŒ … Zd and SŒ is cut from ., then S is cut from . also, so

S … SŒ … Zd 2 Pcut(S) \ Pcut(SŒ). (5)

Thus to obtain a lower estimation for − ln Pcut(GL, r, r 5 Zd) it is sufficient
to obtain an analogous estimation for some subset of GL, r, r 5 Zd.
For any set S … Rd let us call discrete slices of S non-empty intersec-

tions of S with sets of vertices of connected components of the graph N. To
every discrete slice of a set S … Rd there corresponds a slice of S, which is
the intersection of S with that shift of Nœ, which contains this discrete slice.
For any n1, n2 there is a number a such that to every slice there correspond
a discrete slices. Evidently, GL, r, r 5 Zd is cut from . if and only if all its
discrete slices are cut from .. Since all these events are independent,
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Pcut(GL, r, r 5 Zd) equals the product of probabilities that all its discrete
slices are cut from .. Since we need an estimation of Pcut(GL, r, r 5 Zd) from
above, we may ignore some discrete slices due to monotonicity (5).
Let us denote M: NœQ R2 that linear transformation, which maps n1

into e1 and n2 into e2. Also we denote m=minv ¥ (Nœ0{0}) ||Mv||/||v||. Since M
is non-degenerate, m > 0. Notice thatM(Wr) ` Wm·r and that

M((L 5 Wr)+Wr)=((M(L) 5M(Wr))+M(Wr)).

ThereforeM((L 5 Wr)+Wr) ` (L 5 Wm·r)+Wm·r, that is

M(GL, r, r) ` GL, m · r, m ·r.

Now let us consider several cases.

First let {n1,..., nn} … L, whence Nœ ı L. In this case we may take any
r \ 0. Let us denote

Cr=GL, r, r and C −r=GL, r/2, r/2.

Then from Lemma 16, |Cr |£ |C
−

r |£ r
dim(L). Since the diameter of C −r is £ r,

the diameter of every discrete slice of C −r does not exceed £ r, whence car-
dinalities of all discrete slices of C −r do not exceed const · r

2. Therefore the
number of discrete slices of C −r is not less than const · r

dim(L)−2. For every
slice of C −r that slice of Cr, which contains it, contains a disk of radius
const · r. Therefore k0 of the corresponding discrete slice is not less than
const · r. The M-image of the intersection of this disk with the correspond-
ing component of N is evidently D-connected, so we can apply Theorem 1
to it. So − ln Pcut of this discrete slice is not less than const · r from
Theorem 1, so − ln of the product of these probabilities is not less than
const · rdim(L)−1. Thus in this case − ln Pcut(GL, r, r)£ rdim(L)−1.

Now let {n1,..., nn} ł L. This case, in its turn, consists of the follow-
ing two cases.

First let dim(Nœ 5 L)=1. Let us call good those slices of Cr, which
intersect C −r. We also call good the corresponding discrete slices. Since the
diameter of every good slice is £ r, cardinalities of good discrete slices are
£ r. Therefore their number is not less than const · rdim(L)−1. Taking r large
enough, namely r \ 1/m, we can assure that theM-images of good discrete
slices are D-connected. So we can apply Theorem 1 to these M-images to
obtain that − ln Pcut of every good discrete slice is not less than const · r.
Therefore − ln of the product of these probabilities is not less than
const · rdim(L)−1.
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Now let dim(Nœ 5 L)=0. In this case all the slices are uniformly
limited, so the number of discrete slices is £ |GL, r, r |£ rdim(L). Let us denote
p the probability that a set consisting of one vertex is cut from .. Of
course, p < 1. Then, from monotonicity (5), for any discrete slice the
probability that it is cut from . does not exceed p, whence − ln Pcut(GL, r, r)
\ const · rdim(L)−1.

Now let us prove the lower estimation of Theorem 2 in the general
case. Suppose that we have two sets of neighbor vectors, such that the first
set belongs to the second. We denote the corresponding probabilities Pcut
and P Œcut. It follows from monotonicity that

P −cut(GL, r, r 5 Zd) \ Pcut(GL, r, r 5 Zd).

Now take any set (n1,..., nn) of neighbor vectors and take its subset, which
contains only two non-collinear vectors, at least one of which must not
belong to L if not all n1,..., nn belong to L. For this subset the estimation is
obtained in the previous case. Now, from monotonicity it follows for the
general case also. Theorem 2 is proved.

Part III. Large Deviations in Invariant Measures of Some

Cellular Automata

Now let us apply our arguments to one class of cellular automata,
which are linear operators on the set M of normed measures on the con-
figuration space {0, 1}Z

d
. We take any finite set V={v1,..., vn} … Zd, which

contains at least two different elements. Then we define a deterministic
operatorD: {0, 1}Z

d
Q {0, 1}Z

d
by the rule: for all x ¥ {0, 1}Z

d
and all v ¥ Zd

(Dx)v=min(xv+v1 ,..., xv+vn ).

Also for any e ¥ [0, 1] we define one-sided noise Re:MQM as follows:
when applied to a measure dx concentrated in a configuration x=(xv), it
produces a product measure Redx, in which the vth component equals 1
with a probability 1 if xv=1 and with a probability e if xv=0. Let us
denote

m=lim
tQ.
(ReD) t d0,

where d0 is the measure concentrated in the configuration ‘‘all zeros.’’
Existence of this limit is well-known, it follows from monotonicity. For any
set S … Zd we denote 1(S) the cylinder set ‘‘all components in S are ones.’’
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Theorem 3. For any dimension d \ 1, any linear subspace L ı Rd

and any set V … Zd containing at least two different elements there is eg > 0
such that for all e ¥ (0, eg) there is C > 0 such that for all r > 1

− ln m(1(GL, r, r 5 Zd))£C rdim(L).

In the case L=Rd this estimation makes a contrast with estimations of
analogous quantities in ref. 8, which describe a class of cellular automata,
for whose invariant measures − ln m(1(Wr 5 Zd))£ rc, where c < d.

Proof of Theorem 3. It is sufficient to prove the analog of inequal-
ity in Theorem 3 for measures (ReD) t d0 uniformly in t:

− ln mt(1(GL, r, r 5 Zd))£ rdim(L), where mt=(ReD) t d0. (6)

We can represent the measure mt as induced by auxiliary i.i.d. variables gv, s,
everyone of which equals

gv, s=˛
1 with probability e,

0 with probability 1− e

and a map defined inductively as follows:

˛xv, 0=0 for all v ¥ Zd,

xv, s=max(gv, s, min(xv+v1, s−1,..., xv+vn, s−1)) for all v ¥ Zd, s=1, 2,... .

The upper estimation in (6) is trivial, because the event 1(GL, r, r 5 Zd)
at time t will be assured as soon as gv, t=1 for all v ¥ GL, r, r 5 Zd. The
probability that this happens is ek, where k=|GL, r, r 5 Zd|. Since k£ rdim(L),
this immediately implies the upper estimation in (6). To prove the lower
estimation in (6), let us observe that we are dealing with percolation in a
(d+1)-dimensional space with neighbor vectors {n1,..., nn}, where

ni=(vi, −1) for all i=1,..., n, (7)

any vertex (w, s) with s > 0 being closed if and only if gw, s=1. Then
x(v, t)=0 if and only if there is an open path from the point (v, t) to the
initial layer. Now we can interpret mt(1(GL, r, r 5 Zd)) as the probability
that the initial layer t=0 is not reachable from the set

(GL, r, r 5 Zd)+(0, t),
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which is a shift of GL, r, r 5 Zd by the vector (0, t). If the initial layer is not
reachable from this set, then . certainly is not reachable. From uniformity
we may consider GL, r, r 5 Zd unshifted. Thus:

mt(1(GL, r, r 5 Zd)) [ Pcut(GL, r, r 5 Zd).

Here Pcut(GL, r, r 5 Zd) denotes the probability that the set GL, r, r 5 Zd is
cut from . in the graph N, where neighbor vectors are defined by (7).
Although GL, r, r 5 Zd, which was defined in a d-dimensional space, is not
GL, r, r 5 Zd in the (d+1)-dimensional space, it still has all the properties
we need: it is D-connected and its k0 equals its cardinality, which grows
as £ rdim(L). So we can apply Theorem 1 to obtain the lower estimation
of (6). L
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